
w w w . n a p a . f i

1 © Napa Group 2012

NAPA target architecture

Where we want to go and how it’s
proceeding

w w w . n a p a . f i

Layering as it has been done in the
latest two decades or so

Application Logic (Model, Calculation)
As services

Keyboard

Screen
GUI Framework

Application logic independent / oblivious of the UI.

Request services,
ask model
parameters

Event loop

w w w . n a p a . f i

The target architecture

3 © Napa Group 2012

Iron Ruby callback /
eventhandlers

WPF XAML
Widget

Napa C# GUI-
framework Napa Ruby GUI-framework

Napa Fortran Core

NAPA Object Model (C#)

w w w . n a p a . f i

Language choices

• Not everything is best done in Fortran ;)

• Have to leverage the legacy but take
advantage of newer languages

• Higher productivity

• Something fairly mainstream

• Developers

• Support

• Libraries

• Minimize the role of Napa Basic

• Productivity, libraries, support, documentation

4 © Napa Group 2012

w w w . n a p a . f i

Language choices

• First Java was selected but some years
later abandoned for C#. This has left us
with Java legacy we want to get rid of.

• Iron Ruby as the GUI callback language

• Simpler than C# to learn and use for casual
developers

• Easier transformation of present callback
codebase

• XAML for declarative definition of GUI

5 © Napa Group 2012

w w w . n a p a . f i

NAPA Object Model

• Abstract present functionality with class wrappers
to allow OO based access to the functionality

• Also for implementing new functionality

• OO based systems are not without their share of
problems. We’d love to have those problems
instead of the ones we have now.

6 © Napa Group 2012

w w w . n a p a . f i

Language interoperability

• Custom(ized) code generators enable easy access
between Fortran, C and C# (from any to any)
enabling selecting the right language for the job
at hand

• Iron Ruby code can easily call C# (and vice versa)

• Proof of concept implementation of
handling Fortran objects from C# / Iron
Ruby

• To enable effortless integration between UI
and core

7 © Napa Group 2012

w w w . n a p a . f i

How to (slowly) reach the target state

• Refactoring

• The boy scout rule

• Leave the camping ground cleaner than it was
when you got there

• Introducing named constants

• Routine mass renaming

• Cleaning up control flow (remove GOTOs)

• Extract routines to make the huge routines
smaller

• ...

8 © Napa Group 2012

w w w . n a p a . f i

How to (slowly) reach the target state

• Architectural refactoring

• Currently removing the layering violations, i.e.
business logic does not ask for more input

• Unit tests

• In Fortran and Ruby

• Coverage still low but steadily growing

• Often hard to write tests for a small piece of
code

• Global state

• Huge (multi-responsibility) routines

• High coupling

 9 © Napa Group 2012

w w w . n a p a . f i

How to (slowly) reach the target state

• Replace custom solutions with off the shelf
ones when feasible

• E.g. we recently replaced custom memory
allocation implemented in Fortran 77 with the
one provided by C runtime (POSIX)

10 © Napa Group 2012

w w w . n a p a . f i

How to (slowly) reach the target state

• Technology workshops / internal training

• Communication essential

• Spread knowledge of architectural
conventions, best practices etc.

11 © Napa Group 2012

w w w . n a p a . f i

Difficulties with the wetware

• Resistance / nonwillingness to use
approaches like

• Structured types

• Named constants
• E.g. 3 vs STRING_RECORD

• Descriptive names
• E.g. CH17 vs CH_UPCASE

• Resistance to refactoring

• ”If it’s not broken, don’t fix it”

12 © Napa Group 2012

