
Automated Reliability 
Prediction from Formal 

Architectural Descriptions

João M. Franco, Raul Barbosa and Mário Zenha-Rela
{jmfranco,rbarbosa,mzrela} [at] dei.uc.pt

University of Coimbra, Portugal

WICSA / ECSA 2012



Introduction

• SwA supports the specification of quality 
attributes

• Early architectural decisions

Influence software quality

Prevent additional costs

Assure architects on stakeholder requirements

• Problem - In current practice, very few software 
quality attributes are automatically checked

2



Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

3



Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

Parser

Input

4



S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3
1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5
0.1

0.9
0.75

0.25

F

From any 
other state

Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

Parser

Input

Translator

5



Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

Parser

Input

Translator Prism
File

Generate

6



Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

Parser

Input

Translator Prism
File

Generate

Prism
Tool

Loaded into

7



Architectural
Description

Reliability
Prediction

To

ADL File

Annotations

Architectural
Constituents

Parser

Input

Translator Prism
File

Generate

Prism
Tool

Loaded into

Report

8



Validation

9

Reliability Prediction

Architectural Styles

the reliability values with the ones from the literature. Lo
et al. [5] made use of a hierarchical method to predict the
reliability and Gokhale et al. [4] presented the results using
both methods of the state-based approach, the composite and
hierarchical methods.

As a result, Table II shows that our approach provides
reliability values that match to the ones presented in the
literature. More specifically, our reliability values are exactly
the same as the ones provided by the composite methods and
they are close to the values obtained from the hierarchical.
Since, as stated in the Section II, the hierarchical method only
allows us to obtain an approximation of the reliability values
and the maximum difference to our results is 0.35% which is
below 1%, the significance level.

TABLE II: Validation of the reliability prediction method

Literature Our
Approach Difference

Gokhale [4]
Composite 0.8299

0.8299
0.00%

Hierarchical 0.8280 0.22%
Lo et al. [5] 0.8482 0.8512 0.35%

B. Architectural styles

In the second part of our validation procedure, we certify
that our approach generates a correct mathematical model and
provides an accurate reliability value when an architectural
style is applied.

We modeled in Acme the same case-studies from Wang et
al. [6] which represent each one of the different architectural
styles and we applied our approach to generate the proper
mathematical models. We tested the fault-tolerant style with
one active and two redundant components and the parallel style
with three parallel components.

The comparison between the results obtained from our
approach and the ones achieved through the methods presented
by Wang et al. [6], are exposed in Table III.

TABLE III: Validation of the architectural styles

Style Wang et al. 2006 Our approach
Reliability Diff.

Batch-sequential 0.9248722 0.9248722 0.0%
Parallel 0.8945088 0.8945088 0.0%
Fault-tolerance 0.9503923 0.9503923 0.0%
Call-and-return 0.9317644 0.9317631 ⇠ 0.0%

Considering the values provided by previous research stud-
ies, our results are identical, proving that our approach gen-
erates accurate and correct mathematical models when using
architectural styles.

V. LIMITATIONS

The existing limitations in our approach are discussed
below, along with references to tools or research studies that
address those same limitations.

• Components reliability must be known. Our approach
requires that architects know beforehand a value, or
at least a range, for the reliability of the components
in early phases of the software development life-cycle,
which can be difficult. L. Cheung et al. [24] address this
uncertainty by using hidden Markov chains to determine
the component failure probability. Other studies [4], [5]
compute the sensitivity of the system’s reliability by
varying the components reliability and the usage profile.

• Usage profile has to be defined. During design time, inter-
component transition probabilities can be estimated by
consulting with experts who are familiar with the system
and determine what will be the expected usage profile of
the system. If the reliability analysis is to be employed
during the operational phase, the usage profile can be
extracted from the source code by using profilers or test
coverage tools [25].

• State-space explosion. Model checking tools face a com-
mon problem, the combinatorial growth of the state-
space. This occurs when the model has a large number
of states and a great number of transitions between those
states exceeding the memory available. In our approach
we have not faced this problem, not only because we
used simple architectures, but also because the translation
procedure to the Prism language is optimized by using
the smallest number of states and transitions possible.
Groote et al. [26] explain how to reduce the size and
avoid extremely large models, preventing the occurrence
of state-space explosion.

VI. IMPLICATIONS FOR PRACTICE

In this section we share several insights from our work,
contributing with answers to future research on the topic of
reliability prediction of software architectures.

• Application to real case studies. Goseva-Popstojanova
et al. [27] determined the applicability of reliability
prediction methods, in particular for the composite and
hierarchical methods, on a real case study and the results
show that these theoretical methods only differ on 3%
from the real values.

• Influence of our work on the current techniques. The
automated generation of mathematical models from the
architecture specification is an important topic, since
until today the verification and testing procedures were
manually built. This manual activity is prone to errors,
time-consuming and almost impossible to achieve on
complex and large architectures.

• Application to other quality attributes. In the generated
mathematical model we have only predicted the sys-
tem’s reliability, but it can be applied to other system’s
quality attributes, such as cost and performance. This
way, architects would be able to assure a more thorough
quality of the designed software architecture, complying
the requirements of the stakeholders.

the reliability values with the ones from the literature. Lo
et al. [5] made use of a hierarchical method to predict the
reliability and Gokhale et al. [4] presented the results using
both methods of the state-based approach, the composite and
hierarchical methods.

As a result, Table II shows that our approach provides
reliability values that match to the ones presented in the
literature. More specifically, our reliability values are exactly
the same as the ones provided by the composite methods and
they are close to the values obtained from the hierarchical.
Since, as stated in the Section II, the hierarchical method only
allows us to obtain an approximation of the reliability values
and the maximum difference to our results is 0.35% which is
below 1%, the significance level.

TABLE II: Validation of the reliability prediction method

Literature Our
Approach Difference

Gokhale 2002
Composite 0.8299

0.8299
0.00%

Hierarchical 0.8280 0.22%
Lo et al. 2005 0.8482 0.8512 0.35%

B. Architectural styles

In the second part of our validation procedure, we certify
that our approach generates a correct mathematical model and
provides an accurate reliability value when an architectural
style is applied.

We modeled in Acme the same case-studies from Wang et
al. [6] which represent each one of the different architectural
styles and we applied our approach to generate the proper
mathematical models. We tested the fault-tolerant style with
one active and two redundant components and the parallel style
with three parallel components.

The comparison between the results obtained from our
approach and the ones achieved through the methods presented
by Wang et al. [6], are exposed in Table III.

TABLE III: Validation of the architectural styles

Style Wang et al. 2006 Our approach
Reliability Diff.

Batch-sequential 0.9248722 0.9248722 0.0%
Parallel 0.8945088 0.8945088 0.0%
Fault-tolerance 0.9503923 0.9503923 0.0%
Call-and-return 0.9317644 0.9317631 ⇠ 0.0%

Considering the values provided by previous research stud-
ies, our results are identical, proving that our approach gen-
erates accurate and correct mathematical models when using
architectural styles.

V. LIMITATIONS

The existing limitations in our approach are discussed
below, along with references to tools or research studies that
address those same limitations.

• Components reliability must be known. Our approach
requires that architects know beforehand a value, or
at least a range, for the reliability of the components
in early phases of the software development life-cycle,
which can be difficult. L. Cheung et al. [24] address this
uncertainty by using hidden Markov chains to determine
the component failure probability. Other studies [4], [5]
compute the sensitivity of the system’s reliability by
varying the components reliability and the usage profile.

• Usage profile has to be defined. During design time, inter-
component transition probabilities can be estimated by
consulting with experts who are familiar with the system
and determine what will be the expected usage profile of
the system. If the reliability analysis is to be employed
during the operational phase, the usage profile can be
extracted from the source code by using profilers or test
coverage tools [25].

• State-space explosion. Model checking tools face a com-
mon problem, the combinatorial growth of the state-
space. This occurs when the model has a large number
of states and a great number of transitions between those
states exceeding the memory available. In our approach
we have not faced this problem, not only because we
used simple architectures, but also because the translation
procedure to the Prism language is optimized by using
the smallest number of states and transitions possible.
Groote et al. [26] explain how to reduce the size and
avoid extremely large models, preventing the occurrence
of state-space explosion.

VI. IMPLICATIONS FOR PRACTICE

In this section we share several insights from our work,
contributing with answers to future research on the topic of
reliability prediction of software architectures.

• Application to real case studies. Goseva-Popstojanova
et al. [27] determined the applicability of reliability
prediction methods, in particular for the composite and
hierarchical methods, on a real case study and the results
show that these theoretical methods only differ on 3%
from the real values.

• Influence of our work on the current techniques. The
automated generation of mathematical models from the
architecture specification is an important topic, since
until today the verification and testing procedures were
manually built. This manual activity is prone to errors,
time-consuming and almost impossible to achieve on
complex and large architectures.

• Application to other quality attributes. In the generated
mathematical model we have only predicted the sys-
tem’s reliability, but it can be applied to other system’s
quality attributes, such as cost and performance. This
way, architects would be able to assure a more thorough
quality of the designed software architecture, complying
the requirements of the stakeholders.



What to Remember?

• Automated stochastic model generation

• Integration with different arch. styles

• Validation with < 1% diff.

10



Questions ?


