
Extending the Socio-economics of Software
Architecture

Alistair Sutcliffe

University Lancaster &

University of Manchester

WICSA-ECSA Helsinki, August 2012

with thanks to

 Sarah Thew (Manchester) and Pete Sawyer (Lancaster)

Presentation Aims

1. Argue for the importance of modelling Conceptual
System Architecture

 - Requirements Engineering meets SE/Software Architecture

2. Convince you that ‘people issues – values’ have
strong implications for software architecture design

 - Human Factors meets SE/Software Architecture

3. Map out a research agenda for extending the socio-
economics of Software Architecture

Presentation Outline

• Part 1: Requirements Reuse and Conceptual System Architecture

 - Background

 - Problem description- healthcare application

 - Monitoring and Awareness system architectures

 - Adaptive system architectures

• Part II: Implications of User Values for System architecture

 - Value based Requirements Engineering

 - Values in system design

• Conclusions & research agenda

Part I

Reuse of

Conceptual System Architecture

Background

• Plenty of material on Software Architecture @ the Design level

 - from Garlan and Shaw onwards

 - Bass, Kazman et al (2003)

 - GOF patterns (Gamma et al 1994)

 - POSA series (Buschman, Schmidt et al 1996- 2008)

• But not so much on Architecture @ the Conceptual – Requirements level

 - Folwer (1997), Analysis Patterns

 - Service Oriented Patterns maybe ? IBM Web Service patterns, Oracle
SOA patterns, http://www.soapatterns.org

 - Product Lines maybe ? Clemens & Northrop (2001), Pohl et al (2005)

 - Withall (2007), Software Requirements Patterns

 - Jackson (2000) Problem frames- more abstract

 - Sutcliffe (2002) Domain Theory- Object System Models

http://www.soapatterns.org

The problem: Mild Cognitive Impairment (MCI)-
Alzheimer’s disease

• Research Question- Can we detect early signs of MCI from peoples’ use of
computers and persuade them to have follow up diagnostic checks ?

• Approach- detect early signs of MCI from records of computer use- data
and text mining. Give feedback to users and their doctors for follow up
checks.

• Some problems

 - how accurate will diagnosis from computer user be ?

 - what is the danger of false positives ?

 - how can the system reassure the user and encourage follow up action ?

 - privacy, emotional issues, empathy, self efficacy.

In association with

Design Brief
(architecture requirements)

SAMS – Software Architecture for Mental Health Self-
Management

• Solution needs to be as generic as possible

 - economic driver to address a wider class of analogous health care
problems

• Distributed application- monitoring in users’ homes, multi-platform
installations

• Privacy and security (Data protection act, ethical issues)

 - client- server configuration, secure data transmission etc

• Reduce development costs- software reuse

Identifying the Problem Class

• To produce a generic architecture we have to identify the range of
‘analogous’ applications

 - but how abstract should we aim to be ?

increasing
abstraction

cost of
specialisation

increasing
detail and
reuse utility

potential revenue:
number of potential
reuse targets

Problem Class
Self Aware, Adaptive Systems

 - Awareness requirements (Mylopoulos, Souza et al 2011)

 - Generic Monitors with adaptation ReqMon & EEAT (Robinson 2006,

Fickas & Feather 1995)

 - RELAX configurable adaptive systems (Sawyer, Whittle et al 2010)

 - Self aware systems (Ghezzi et al 2009)

 - User Modelling –Adaptation in HCI, Recommender systems (Pu 2009,

Dumais et al 2010)

 - Dynamic Planning in AI

Self Aware, Adaptive Systems

• A widespread class of problems, but ...

 - what defines this range of problems ?

 - are there any abstract models as starting points for {generic} architecture
design ?

• Some models...but very abstract, no sub classes

 - in the solution domain GOF Observer pattern (Gamma et al 1994)

 - in the problem domain Jackson’s problem frames (Jackson 2000)

User

Model
editor

 Object model

Model
requirements

Workpieces
problem frame

Edit
requs

updates

changes

Self Aware, Adaptive Systems-
the Domain Theory view

Nature of
Change

2D object Movement Sensing,
e.g. ant changes direction

2D continuous Movement,
e.g. ships at sea

Object Property Sensing,
e.g. colour in chemical reaction

Continuous Sampling,
e.g. heart beat monitoring

Continuous Value Sensing,
e.g. blood pressure monitoring

Create- Object Instance Monitoring,
 e.g. any database update

Delete

discrete

continuous
2D

movement

existence-

state

3D

attribute
property

attribute

value

location

Movement
type

2D constrained Object Movement
Sensing, e.g. trains in track sectors

3D continuous, constrained
e.g. air traffic control

Value Sample Sensing, e.g. periodic
check on group membership

discrete

continuous

Monitored
 Object

type of
change

3D constrained- flexible
manufacturing cells

continuous

discrete

free- format

Object Sensing System Models
(monitoring, sense making)

agent

receive

world
segments

object

change

sensor

signal

Level-2 class Spatial Object Sensing

events

exist-in

detection report

o

o

monitor
agent

segmented
world in which
objects move

object
movements

movement
reports

Generic Requirements (GR)

1. System model
2. Event filters
3. Event pattern monitor
4. Event interpretation
5. Trace history

Design Issues

1. Detectability of events
2. Fidelity of detection
3. Sampling frequency
4. Identifying events
5. Accurate interpretation

Awareness Requirements
(Souza, Mylopoulos et al 2011)

1. Event awareness

 - Monitors for Single events (semaphores) and simple event patterns
 - detect exceptions and unexpected events
 - omissions, co-missions, early/late events (Hollnagel 1999)
 - patterns across multiple event streams
 - Interpreters for more complex event patterns
 - match event patters to normal behaviour
 - detect exceptional patterns, alternative paths etc
 - interpret patterns in context (e,g, mobile awareness)

2. Performance- Conceptual awareness

 - Data capture for event (and state/context) history

 - Interpreters for complex patterns
 - model based interpretation
 - reasoning to infer higher order semantics (intent, concepts, trends, etc)
 - data and text mining, image/ audio recognition

 - Understand the external world, adapt system to contextual changes

Monitor Types

• Hard Monitors- Awareness requirements which can be captured
automatically (or set as thresholds, targets, indicators, etc)

 - simple event analysers

 - compound event analysers- sequences, cumulative events

 - context analysers- event and states

 - complex event analysers, data miners with history

• Soft Monitors- Awareness requirements which can only by captured
indirectly by people

 - by observation, interviews

 - surveys

 - standards compliance, certification

 - running tests, drills to check system performance

 - decision support analysis tools (e.g. statistical tests)

Hard (state/event) Awareness

• State value, discrete, continuous, boolean

• Event identity

• Event patterns

• Temporal patterns

• Event –state monitors
For an event pattern taxonomy
See Hollnagel (1999)
CREAM

Performance awareness

• Aggregate data from event level monitors

 - over time

 - across individuals

 - classify events, categories, distributions

 - data miner, classifier components

• Compare aggregated data against a target (threshold, indicator) or for

 desired patterns

Self Aware, Adaptive Systems Architecture

Agent Control

OSM

Monitors/

Sensors
Interpreters Feedback

UI

Models Adaptors

Human in

the loop

Automatic

System

components

Object Sensing
OSM

Interpreters

Algorithmic

Data Text Image Audio

Association

patterns

Rules

Clusters

...

Lexical

Statistical

Syntax rules

Semantic

patterns

...

Shape/

shade

Feature

recognisers

...

Sonogram

patterns

Fourier

transformations

...

Hypothesis-driven

or Exploratory

Model-based

Object/Agent Construct

{ + context } { + context }

Intent Behaviour State

Exists Change Trend

Partially
Known
world

Goal oriented

Unknown
world

SAMS: Object sensing (People awareness)

• Agent (People) Monitors

 -monitoring values, states/ properties of agents,

 e.g. health care blood pressure, body temperature,

 cognitive states (memory, reaction time)

 - monitoring agent behaviour

 e.g. heart rate, respiratory rate, gestures, movement,

 analysing computer operation in email

 - monitoring intent and emotional state

 e.g. stress by heart rate and GSR,

 intent from behaviour. affect from text

 -performance monitors

 e.g. exercise routines, calories burned, aerobic exercise level

 mental performance (MCI)

Agent Control OSM Family
(adaptation component)

Command-
based

Probabilistic
Agent Response

Deterministic
Agent Response

 Agent
Control

 Closed response
set

Information
based

Open response
set

command & control systems
human / automated agents
close- loose coupling

human in the loop/ intelligent agents
explanation and persuasive systems
recommenders

autonomous agents
semi- autonomous
direct control

Agent Information response- open

 Selector

filter
decide

Information

 Information
 provider

create

user/receiver

Feedback UI

behaviour

info source

Generic Requirements

Information Presenters

Filters

Highlighters

Customisers

Interactive controls

Media

Explainer

content
media

augment
present

Design Issues

Selection of msg/content

Matching users to msg

Quantity of info

Delivery pace

Delivery-emotive effects

Argumentation

Object Sensing- Adapting Conceptual Model
@ the event level

Monitors
sensors

Interpreters
Adaptors

Models of the
world

Which events & states
to monitor ?

Active or passive sensors ?

Event/state detectability

Fidelity of monitoring ?
(time, signal type..)

Interpreting simple
Events

Event patterns

Higher order states

Simple changes at run
Time

Response actions

Rule/method level
changes

Delegation

Object Sensing- Adapting Conceptual Model
@ the Performance level

Monitors
sensors

Interpreters
Adaptors

Models of the
world

Which events & states
to monitor ?

Active or passive sensors ?

What fidelity of monitoring ?
(time, signal type..)

How long (time period)

Scope (population, area, etc)

Interpreting Event
patterns

Higher order constructs
states, intent, models

Data & Text Mining
Learning Algorithms

Performance tuning

Component selection

Delegation

Requirements change
{new designs,
Versions, product line
Feature adaptation}

Decision
Trade off

SAMS Conceptual Architecture

Text

Monitor

Text Miner

Interpreter

Event Behaviour

Monitor

Data Miner

Interpreter

Feedback

Presenter

Customiser/

Adaptor

 user

 model

Media

system

task model language

discourse

model

Interpreted Behaviour & Text

MCI Diagnosis - probability

Integrator

Reasoner

Knowledge (conceptual model) Reuse
SAMS Architecture

• Design and selection of performance monitor components- data miners

 (Open source libraries)

• Requirements and design of text miner components

• Selection of a mix of event and performance monitors

 (Open source)

• Choice of feedback UI- adaptation facilities

• System- architecture integration

• Ability to explain architecture- design options to users (medical researchers
and participant volunteers)

Part II

Design implications of User Values

for System Architecture

Soft Issues, Values & Architecture

• Values- stakeholder beliefs, attitudes, opinions

• Surely this is all in the social part of systems....

• But people are in the loop of most systems...

• Self aware- Adaptive systems are widespread

 - in healthcare, patient monitoring

 - in ecommerce, recommender systems

 - in education, training systems

 and many other domains

So what are ‘Values’ ?

• Related to non functional requirements- e.g. security, privacy, usability,

• Users’ beliefs, attitudes, concepts, some are generic, other transient-
cultural, e.g. green-environmental values

• Value sensitive design – Freidman et al - www.vsdesign.org

Motivations

goals

Values

Beliefs

Attitudes

Emotions

Feelings

Decisions

Actions

Personality

influence
influenc
e

Values- Architecture implications

Monitoring
Autonomy & Control

Collaboration
workflow

Shared awareness

Extensibility
Configurability

& Customisation

Features &
Complexity

Safe protocols,
encryption
audit trails

Morals/
Ethics

Trust
Cooperation

Sociability

Creativity

Motivation

Security

Design
Quality

Aesthetics

Component
coupling

Usability

Flexibility

Maintain-
ability

Value based Requirements Engineering
(Thew & Sutcliffe 2008)

• Guidance about ways to identify values, motivations and emotions, &
potential project impact

• Informed by analyst interviews, project reports & psychological
theory.

Value

concept

Related terms Potential sources Process

implications

Trust openness

integrity

loyalty

responsibility

reliability

Relationships with other

individuals /departments

Privacy policies

Less control

milestone checks

improved team

confidence

Collaboration cooperation

friendship

sympathy

altruism

Relationships with others

Relationships:

awareness of others –

office politics

Improved team

cooperation

shared awareness

Impact of Values

degree/extent

of monitoring

intrusive/passive

degree of coupling

accuracy of inference

control force

in adaptation

visibility

transparency

control

trust- openness

privacy

Customisation

Interpreter Monitor Adaptation

feedback loop

Values- impact on SAMS

• Trust and privacy concerns, user control over data and system, visibility
and explanation facilities.

• User control- configuration and customisation of architecture- more/less
analysis, extent of monitoring (e.g. +/- email content)

• Loose coupling between system components (InterpretersĄ Adapters)

 users in the loop

• Accuracy and emotional sensitivities- Feedback UI design for
communicating results (false positives problem)

Reflections-
Reuse & Conceptual System Models

• Room for conceptual models in reuse ?

 - ERPs commercially established... but address established business needs

 - Product lines, also established... but tend focus on engineering sector
applications

 - Open source components vast choice, selection and composition
problems

• Models and taxonomies for indexing software component libraries- link
between problem and solution models to software components

• Knowledge reuse – integrating requirements engineering and software
design

Reflections-
User Values and System Architecture

• Socio-Technical systems ‘thinking’ in design of software architecture

• Values link requirements – (user perspective) to software engineering-
(design perspective)- see also Twin Peaks model (Nuseibeh 2006)

• Simple set of concepts and heuristics/ guidelines for architecture design

• Values critical for human in the loop systems- link Human Factors/ Human
computer interaction to software engineering

• Values already present in Agile method Process (Beck 1999), need to add
design implications

Research Agenda
Conceptual Modelling & Reuse

• Develop taxonomy of conceptual system models

• Apply conceptual models in practice – development methods are
more than just process- knowledge reuse needs to be integrated

 - pattern books of models for RUP- UML ?

• Support tools for Reuse (model) Oriented Software Engineering-
intelligent hypertext, design advisors

• Abstraction theory- a really difficult research challenge

 - so what is the ideal cut on abstraction ?

 - where are the optimal boundaries, granularity ?

Research Agenda
Socio-Economics of System Architecture

• Analysis methods, heuristics and patterns connecting human ‘social
issues’ to software engineering and systems architecture

 - more than just values,

 emotional effects in interactive agents

 social media architectures

 robot architectures

• Values in the development process- tools for thought in agile
methods

• Socio-economics of software architecture- costs- benefit analysis
for system design

Conclusions

• I hope I have convinced you of the merits of conceptual modelling

• And the need for a Theory of Abstraction for system architecture

• The value of Values and how human issues should be incorporated system
design

• And that requirements and software architecture need to work more
closely together

 “The inevitable intertwining of requirements and architecture design”

 after Bob Balzar

Thank you

and any questions ?

Selected References

Endrei M, et al (2004). Patterns: Service- Oriented Architecture and Web Services, IBM/Redbooks.

Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method: CREAM. Elsevier, Oxford.

M. Jackson. (2001) Problem Frames: Analysing and Structuring Software Development Problems. Harlow: Pearson Education,

Withall S. (2007), Software Requirement Patterns, Wiley/Microsoft

Pohl,K., Böckle, G., van der Linden, F. (2005), Software Product Line Engineering: Foundations, Principles, and Techniques.
Springer, Berlin

Clements, P. & Northrop, L. (2001), Software Product Lines: Practices and Patterns, Addison-Wesley Professional.

Bass, L., Clements, P., & Kazman, R. ‪ (2003), Software Architecture in Practice, Addison-Wesley.

Nuseibeh B., (2006), Weaving together requirements and architecture. IEEE Software 34(4), 115-117

Sawyer, P., Bencomo, N., Whittle, J., Letier, E & Finkelstein, A. (2010), “Requirements-Aware Systems A research agenda for RE for
self-adaptive systems”. in Proceedings, 18th IEEE International Conference on Requirements Engineering (RE ’10), Sydney,
Australia. Los Alamitos CA: IEEE Computer Society Press, 2010, pp. 95-103.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B., Bruel, J-M. (2010), "RELAX: A Language to Address Uncertainty in Self-Adaptive
Systems Requirements", Requirements Engineering Journal. 15 (2), 2010. pp 177-196.

Souza, V.E., Lapouchnian, A., Robinson, W.S., & Mylopoulos, J. (2011) Awareness requirements for adaptive systems. in
Proceedings of SEAMS '11 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pp 60-69, ACM Press

Sutcliffe, A. G. (2008). The socio-economics of software architecture. Automated Software Engineering, 15, 343-363.

Thew, S., & Sutcliffe, A. G. (2008). Investigating the role of soft issues in the RE process. In Proceedings of 16th IEEE International
Requirements Engineering Conference RE 2008. Los Alamitos CA: IEEE Computer Society Press, pp 63-66

Sutcliffe. A.G. (2009), “On the inevitable intertwining of requirements and architecture”, in K. Lyytinen, P. Loucopoulos, J.
Mylopoulos and B. Robinson (Eds). Design Requirements Engineering: A Multi-Disciplinary Perspective for the Next Decade.
Berlin: Springer, pp. 168-85.

Sutcliffe, A. G., Papamargaritis, G., & Zhao, L. (2006). Comparing requirements analysis methods for developing reusable
component libraries. Journal of Systems and Software, 79(2), 273-289.

Papamargaritis, G., & Sutcliffe, A. G. (2004). Applying the Domain Theory to design for reuse. BT Technology Journal, 22(2), 104-
115.

Sutcliffe, A. G. (2002). The Domain Theory: Patterns for knowledge and software reuse. Lawrence Erlbaum Associates, Mahwah NJ.

