
Documenting Early
Architectural Assumptions in

Scenario-Based Requirements
 Dimitri Van Landuyt

Eddy Truyen

Wouter Joosen

Requirements
Engineering

Transition to architecture

Architectural
Design

??

Requirements
Engineering

Transition to architecture

Architectural
Design

Throwing of requirements
“over the wall”

Transition to architecture

More interaction leads to
higher efficiency

Cf. Twin Peaks model to SE
[1], co-evolution, …

Faster convergence to a
solution [7]

Example: early
architectural assumptions

Transition to architecture

Early architectural assumptions

Early
before real architectural decisions have been made

Architectural, about
Initial decompositions (~ logical view), initial system
elements (~ deployment view), behaviors (~ process view), …

Assumptions
≠ stakeholder requirements, technical or project
constraints, …

Made by technical stakeholder such as requirements
engineer

Early architectural assumptions

in scenario-based requirements

Case study: car crash management system (CMS)
Collecting information about a car crash

Suggesting resolution strategies

Coordination of resolution (dispatching help workers,
etc)

Third-party case study used for comparing
modeling approaches

Used in a MSc course on software architecture

Scenario-based requirements: Use Cases and Quality
Attribute Scenarios

Early architectural assumptions

in scenario-based requirements
Availability: car crash reporting

[..] [..]

Stimulus The (sub-)system responsible
for receiving emergency calls
and forwarding them to an
available coordinator has
crashed

[..] [..]

Response After detection, system goes in
degraded modus:
• Calls are redirected
• Restart/redeployment of the
subsystem [..]

Response
measure

• Does not affect ongoing
witness calls
• Calls are redirected within 5s.
• [..]

Decomposition

Assumed
Functionality

Technical constraint

Key observations and problem

statement
Three observations about early architectural
assumptions (EAAs)
1. Documented implicitly
2. Bad modularity: many scenarios are based on the

same EAAs
3. Crosscutting effects on system (& its requirements)

Problem: this hinders the navigability and
accessibility of requirements body

Hard to navigate semantic interrelations between
requirements (mental effort)

Problem statement: motivation

Key early development activities are hindered by
limited navigability:

 Consistency management in RE
• E.g. making changes in one scenario might ripple to others

 Identification of architectural interaction points
• ADD [2,3]

• ATAM [2,4]

 Architectural change impact analysis
• E.g. invalidating an EAA: what’s the impact?

Architectural knowledge management
Document the process, not only the end result

Towards a solution

1. Make EAAs explicit and modular
• Sufficiently expressivity modeling formalism to

address crosscutting nature of EAAs

• In ongoing work: we are aspect-oriented
modeling techniques for this

2. Provide process support in the transition to
architecture

Maintain traceability links between EAAs and
actual architectural decisions
• Accept, refine, reject

Summary

Early architectural assumptions (EAAs)

(i) implicit, (ii) scattered and tangled and (iii) exert
crosscutting influences;

hinder key development activities in the
transition to architecture

Similar to (late) architectural assumptions

Shown to have non-trivial impact on software
quality [5,6]

Questions?

[1] Bashar Nuseibeh. Weaving together requirements and
architectures. IEEE Computer, 34(3):115–117, 2001.
[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison-Wesley, second edition, 2003.

[3] Rob Wojcik, Felix Bachmann, Len Bass, Paul C. Clements,
Paulo Merson, Robert Nord, and William G. Wood. Attribute-
driven design (ADD), version 2.0. Technical report, Software
Engineering Institute, November 2006.

[4] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere. The architecture tradeoff analysis method. In ICECCS
’98.

Questions?

[5] David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch, or, why it’s hard to build systems out of existing parts. In
Proceedings of the 17th International Conference on Software
Engineering, pages 179–185, Seattle, Washington, April 1995.

[6] James A. Miller, Remo Ferrari, and Nazim H. Madhavji. An
exploratory study of architectural effects on requirements
decisions. J. Syst. Softw., 83(12):2441–2455, December 2010.

[7] Dimitri Van Landuyt, Eddy Truyen, and Wouter Joosen. On the
modularity impact of architectural assumptions. In Proceedings of
the 2012 workshop on Next Generation Modularity Approaches for
Requirements and Architecture, NEMARA ’12, pages 13–16, New
York, NY, USA, 2012. ACM.

