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Transition to architecture 

More interaction leads to 
higher efficiency 

Cf. Twin Peaks model to SE 
[1],  co-evolution, … 

Faster convergence to a 
solution [7] 

Example: early 
architectural assumptions 

 



Transition to architecture 



Early architectural assumptions 

Early 
before real architectural decisions have been made 

Architectural, about 
Initial decompositions (~ logical view), initial system 
elements (~ deployment view), behaviors (~ process view), … 

Assumptions 
≠ stakeholder requirements, technical or project 
constraints, … 

Made by technical stakeholder such as requirements 
engineer 



Early architectural assumptions 

in scenario-based requirements 

Case study: car crash management system (CMS) 
Collecting information about a car crash 

Suggesting resolution strategies 

Coordination of resolution (dispatching help workers, 
etc) 

Third-party case study used for comparing 
modeling approaches 

Used in a MSc course on software architecture 

Scenario-based requirements: Use Cases and Quality 
Attribute Scenarios 



Early architectural assumptions 

in scenario-based requirements 
Availability: car crash reporting 

[..] [..] 

Stimulus The (sub-)system responsible 
for receiving emergency calls 
and forwarding them to an 
available coordinator has 
crashed 

[..] [..] 

Response After detection, system goes in 
degraded modus: 
• Calls are redirected 
• Restart/redeployment of the 
subsystem [..] 

Response 
measure 

• Does not affect ongoing 
witness calls 
• Calls are redirected within 5s. 
• [..] 

Decomposition 

Assumed 
Functionality 

Technical constraint 



Key observations and problem 

statement 
Three observations about early architectural 
assumptions (EAAs) 
1. Documented implicitly 
2. Bad modularity: many scenarios are based on the 

same EAAs 
3. Crosscutting effects on system (& its requirements) 
 

Problem: this hinders the navigability and 
accessibility of requirements body 

Hard to navigate semantic interrelations between 
requirements (mental effort) 
 



Problem statement: motivation 

Key early development activities are hindered by 
limited navigability: 

 Consistency management in RE 
• E.g. making changes in one scenario might ripple to others 

 Identification of architectural interaction points 
• ADD [2,3] 

• ATAM [2,4] 

 Architectural change impact analysis 
• E.g. invalidating an EAA: what’s the impact? 

Architectural knowledge management 
Document the process, not only the end result 
 



Towards a solution 

1. Make EAAs explicit and modular 
• Sufficiently expressivity modeling formalism to 

address crosscutting nature of EAAs 

• In ongoing work: we are aspect-oriented 
modeling techniques for this 

2. Provide process support in the transition to 
architecture 

Maintain traceability links between EAAs and 
actual architectural decisions 
• Accept, refine, reject 

 



Summary 

Early architectural assumptions (EAAs) 

(i) implicit, (ii) scattered and tangled and (iii) exert 
crosscutting influences; 

hinder key development activities in the 
transition to architecture 

Similar to (late) architectural assumptions 

Shown to have non-trivial impact on software 
quality [5,6] 
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