Integrating Variability Management and Software Architecture

Iris Groher and Rainer Weinreich
Contents

- Variability Management and Architecture – State of the Art
- Background – Architecture Management in LISA
- Variability Management in LISA
- Current and Future Work
Variability Management and Architecture

- **State-of-the Art**
 - Variability management and architecture development are often separated
 - Hinders traceability
 - Requires complex mappings between the models used in the different approaches
 - Danger of overengineering and model violations

- **Approach**
 - Integrate variability management and architecture design and development
 - Variability awareness
Architecture Management in LISA

- Model and toolkit for continuous architecture management and analysis
- Single, formalized component-based architecture model
- Integration and connection of requirements, design decisions, architectural abstractions and implementation artefacts
- Creation and manipulation of architecture models, gathering and analysis of architectural knowledge, synchronization of architecture and implementation
Variability Management in LISA (1)

- Integration of the Orthogonal Variability Model (OVM)
- Feature modelling support
- Different views for working with these models
- Visualizations for variability awareness during architecture development
Variability Management in LISA (2)
Current and Future Work

- Additional visualization options
- Product derivation
- Model analysis
 - Variability-specific constraints
- Case studies
Conclusions

- Existing variability management approaches focus on product derivation
- Product line architecture development from different perspectives and viewpoints is neglected
- LISA provides integration of variability management and architecture development activities
 - Model integration – architectural and variability concepts are treated uniformly
 - Tool integration – variability management as architectural viewpoint