SecArch: Architecture-level

Evaluation and Testing for
Security

Sarah Al-Azzani

Rami Bahsoon
University of Birmingham, UK
August 2012

Motivation

m Calls for further security architecture testing that is design-specific
(McGraw, 2004)

m Supporting testers to locate problematic areas in large specifications

m Lack of research in analysing dependability with respect to
Interactions across multiple views (France, 2007)

m Proposing a systematic architecture evaluation method to guide
testers to vulnerable interactions

Merges the concept of implied scenarios and race condition
detection

" A
Background

m Previous Research: “Using Implied Scenarios for Security Testing”
(SESS '10)

m Implied Scenarios (Alur, 2000): hidden behaviour that arrises due to
mismatch between the specified behaviour and the architecture.

Scenario-based languages models behaviour as partial views

A result of components having only local views of the execution
In concurrent systems (Uchitel, 2003)

Lack of synchronisation between components
Attackers often intentionaly probe unspecified behaviour

Outline

m Overview of Implied Scenarios

m Overview of the problem

m Proposed solution applied to an industrial case study
Using syntactics analysis and sematics analysis

m Results

Contribution

m Extending on the foundation of Implied Scenario detection
(Sebastian Uchitel 2003) to search for hidden race conditions, while
allowing for evaluation of security with the presence of negative
behaviour

" Jd
Implied Scenarios Detection

m Implied Scenario detection algorithm introduced by Uchitel 2003 in LTSA-
MSC tool

Incremental elaboration algorithm using behaviour models for detecting
implied scenarios from incomplete scenario-based models

Dynamically combining different scenarios together to provide an
architectural view of system behaviour.

Architecture model is the parallel composition of a collection of LTSs,
where each LTS model represents the local knowledge of each
component from all scenarios

S I m p I Ifl ed User Server Admin nt
Example | enctieserver
al
|, disableServer ivd
| Enable Buyltems
login N
L4
|, successful
al
|, alltems ’
al
viewltem 9 Disable
| returnitem
\‘
buy N
L
logout N
L
successfl alllterws wiewltern retwrdtern buy logout disableServer

enahleserverdisableserver endd ction

E.

endction

Example of detected implied scenarios

returmRect

ImpliedScenarioCheck

Client Stub SIS Database HhoE
viewStudB il
V]
forward A
V]
requestStudB H
V]
% returnStudB
N
|, return
N
returné/
N FAY

" A
Limitations in the Implied Scenario algorithm

m Does not provide complete coverage of possible traces

supporting FIFO queues only, with strong assumptions about
message orderings

Scenarios are only composed in parallel when there is a shared
message between the involved scenarios

From previous initial example, each individual scenario yields the
traces:

1: enableServer
2: disableServer

3: login > successful > Alllitems > selectltems > returnitems> buy >
logout

The behaviour model on the other hand, gives the following
traces

1: enableServer > disableServer

2: enableServer > login > successful > Allitems > selectltems >
returnitems> buy > logout > disableServer

m |s this the total number of possible traces? No

" A
Trace difference between Behaviour and Scenario
models

0 Behaviour model traces do not model the scenarios individually, but
instead they model the

Composition of scenarios from multiple component views
Possible continuations of scenario
Hidden implied scenarios.

0 Analysing each sequence diagram may result in:

Only sub traces being addressed rather than overall maximal
execution

What might be reported as a race condition might be acceptable
in another scenario in the specification.

0 We can obtain a more holistic view of concurrent behaviour by
merging the behaviour model and interaction models.

"
Proposed Approach

m Use LTSA-MSC tool to search for implied scenarios (Uchitel 2003)
m Use UBET tool to search for Race conditions (Alur 2000)

m Proposal: Searching for race conditions in behaviour model traces
STEP1: Take specified scenarios + HMSC into the LTSA-MSC tool.

STEP2: LTSA-MSC tool generates the architecture model and reports
detected Implied scenarios.

STEP3: Transform all maximal traces of the architecture model into an
MSC form; these traces can be generated using a built in simulator in
the LTSA-MSC.

STEP4: Feed the new MSCs into the UBET tool to search for race
conditions.

STEPS: If negative race conditions are found, feed back into the LTSA-
MSC tool and update the HMSC, then repeat step 1.

STEPG: concrete test cases are built from implied scenario traces and
race condition traces.

Start

Add Race conditions as negative scenarios and
repeat checking for implied scenarios caused by
the addition of race conditions

HMSC & MSCs
MSC1
ye N
MSC3 MSC2
S o
N MSC4 |

Assumes complete

knowledge

Check Each MSC for
potential race conditions

Control
start_ack |

User

Behaviour
model

forward

(. @@@

toast_ack—]

User Control Heating
start_ack |
Heq - heatCmd
toast_ack—
noBreadErro
heatCmd—p
User Control Heating

start_ack |
heatCmd
toast_ack—
noBreadError-

return

Generate MSCs from

maximal traces

Attibute comparison between SecArch and Uchitel2003
and Alur2000

Criterion Uchitel | Alur | SecArch

Assumes complete knowledge of environment v
Assumes incomplete knowledge of environment
Produces all possible executions of modelled system
Multi-scenario analysis (i.e. produces maximal traces)
Single scenario analysis (i.e. produces sub-traces)
Searches for specification gaps (i.e. implied scenarios)
Searches for race conditions

Supports High-level MSC to infinite traces

Finite traces (i.e. bounded MSCs)

Synctactic analysis

Semantics analysis v
Models timing v

Figure 4. Attribute comparison between Uchitel’s algorithm [23], and Alur’s [3], and SecArch

NN NSNS

SN N N
SENRK8N K8s

"
Case Study: Architecture interfacing the cloud

m A bank adopting SaaS cloud provider, Salesforce.com to process
their risk data;

m Started with 11 scenarios representing the requirements

m The architecture consists of 7 components with two types of users,
registered-users and administrators

"
Searching for implied scenarios and race conditions on
every scenario individually

BET | LTSA-MSC

Scenl: Synchronise

Scen2: User Registeration
Scend: Subscribe

Scen4d: Set Fields Encrypted
Scend: Set Fields Decrypted
Scen6: Revoke user

Scen7: View Regulated Data
Scend: View Plain Data
ScenY: Revoke Key

Scenl(: Save Regulated Data
Scenll: Save Plain Data

CcoRroOo o oo oo oo

cCcCo oo o o000 oo o

Figure 6. System scenarios tested using LTSA-MSC [23], and
UBET [14]. Results indicate one race conditions found

"

Results

Scenario No. Traces | Alur | Uchitel | Single Cycle | Positive | Security IS
Combol | Scenl0 | Scen9 | Scenl Scen? 9 2 1 4 3]
Combo2 | Scend Scenb | Scenb Scenl 17 29 8 4 16 4
Combo3d | Scenb Scend | Scen6b | ScenlO | 17 33 10 7 21 8
Combo4 | Scen7 | Scenll | ScenlO | Scen8 | 9 0 5 N/A 3 2
Combob | Scenl Scend Scenb Scend 11 7 4 2 5 4

rure 7. Results from the composition of sets of scenarios using LTSA-MSC [23], and UBET [3]. Scenario names are listed in Figure

Scenario No. Confidentiality | Integrity | Availability | Security Scenarios
Combol | ScenlO | ScenY | Scenl Scen2 | 0 3 3 6
Combo2 | Scend Scenb | Scenb Scenl 1 2 1 4
Combo3 | Scenb Scend Scenb Scenl0 | 2 4 2 8
Combo4d | Scen7 Scenll | ScenlO | Scen8 1 0 1 2
Combob | Scenl Scen8 | Scenb Scend 1 2 1 4
Figure 10. Results of potential security consequences from the composition of scenarios using LTSA-MSC [23], and UBET [3]

" J
Usage Scenarios

m Early test case and test suite generation

demonstrated our ability to enrich current existing test suite to
Include security related test cases

m Architecture refinement
Including detected positive scenarios

Correcting design errors

m Security risk assessment

" A
Further...

m Automation
The process can be easily automated
Requires translating the inputs between the tools forwards and backwards
Omitting repetitions

m Generality and Applicability
Working at the architecture offers an adequate level of generality
Applicable for threaded systems, such as concurrent and real time systems

Tried on ldentity Management Systems, web script design, Smart camera
distributed system, etc...

m Phases of Application
Approach can begin at analyses and design phase
Supports early test case generation for test-driven applications

m Scalability
Lack of scalability in the LTSA-MSC tool requires repetition

Any tool that is capable of composing scenarios and searching for hidden implied
scenarios can be adapted.

" A
Summarising!

m Proposed a systematic architecture evaluation methodology to search for
potential vulnerabilities in the specification

Reduce the search time and the chances of overlooking vulnerabilities
Semantics and syntactic implication of specifications

Reduces subjectivity

Takes into account incompleteness of specifications

Do not make assumptions on how the implementation might prevent an
issue from occurring

Design-specific to search for design vulnerabilities.

Evaluating the security posture with presence of negative behaviour
= Might be expensive to redesign a system

Forms building blocks for searching for multi-step attacks

€10.00 per guestion please! ©

S.Al-Azzani@cs.bham.ac.uk

