
SecArch: Architecture-level

Evaluation and Testing for

Security

Sarah Al-Azzani

Rami Bahsoon
University of Birmingham, UK

August 2012

Motivation

 Calls for further security architecture testing that is design-specific
(McGraw, 2004)

 Supporting testers to locate problematic areas in large specifications

 Lack of research in analysing dependability with respect to
interactions across multiple views (France, 2007)

 =

 Proposing a systematic architecture evaluation method to guide
testers to vulnerable interactions

 Merges the concept of implied scenarios and race condition
detection

Background

 Previous Research: “Using Implied Scenarios for Security Testing”

(SESS ’10)

 Implied Scenarios (Alur, 2000): hidden behaviour that arrises due to

mismatch between the specified behaviour and the architecture.

 Scenario-based languages models behaviour as partial views

 A result of components having only local views of the execution

in concurrent systems (Uchitel, 2003)

 Lack of synchronisation between components

 Attackers often intentionaly probe unspecified behaviour

Outline

 Overview of Implied Scenarios

 Overview of the problem

 Proposed solution applied to an industrial case study

 Using syntactics analysis and sematics analysis

 Results

Contribution

 Extending on the foundation of Implied Scenario detection

(Sebastian Uchitel 2003) to search for hidden race conditions, while

allowing for evaluation of security with the presence of negative

behaviour

Implied Scenarios Detection

 Implied Scenario detection algorithm introduced by Uchitel 2003 in LTSA-
MSC tool

 Incremental elaboration algorithm using behaviour models for detecting
implied scenarios from incomplete scenario-based models

 Dynamically combining different scenarios together to provide an
architectural view of system behaviour.

 Architecture model is the parallel composition of a collection of LTSs,
where each LTS model represents the local knowledge of each
component from all scenarios

Simplified

Example

Example of detected implied scenarios

Limitations in the Implied Scenario algorithm

 Does not provide complete coverage of possible traces
 supporting FIFO queues only, with strong assumptions about

message orderings

 Scenarios are only composed in parallel when there is a shared
message between the involved scenarios

 From previous initial example, each individual scenario yields the
traces:

1: enableServer

2: disableServer

3: login > successful > AllItems > selectItems > returnItems> buy >
logout

 The behaviour model on the other hand, gives the following
traces

 1: enableServer > disableServer

 2: enableServer > login > successful > AllItems > selectItems >
returnItems> buy > logout > disableServer

 Is this the total number of possible traces? No

Trace difference between Behaviour and Scenario

models

 Behaviour model traces do not model the scenarios individually, but
instead they model the

1. Composition of scenarios from multiple component views

2. Possible continuations of scenario

3. Hidden implied scenarios.

 Analysing each sequence diagram may result in:

1. Only sub traces being addressed rather than overall maximal
execution

2. What might be reported as a race condition might be acceptable
in another scenario in the specification.

 We can obtain a more holistic view of concurrent behaviour by
merging the behaviour model and interaction models.

Proposed Approach

 Use LTSA-MSC tool to search for implied scenarios (Uchitel 2003)

 Use UBET tool to search for Race conditions (Alur 2000)

 Proposal: Searching for race conditions in behaviour model traces

 STEP1: Take specified scenarios + HMSC into the LTSA-MSC tool.

 STEP2: LTSA-MSC tool generates the architecture model and reports

detected Implied scenarios.

 STEP3: Transform all maximal traces of the architecture model into an

MSC form; these traces can be generated using a built in simulator in

the LTSA-MSC.

 STEP4: Feed the new MSCs into the UBET tool to search for race

conditions.

 STEP5: If negative race conditions are found, feed back into the LTSA-

MSC tool and update the HMSC, then repeat step 1.

 STEP6: concrete test cases are built from implied scenario traces and

race condition traces.

Attibute comparison between SecArch and Uchitel2003

and Alur2000

Case Study: Architecture interfacing the cloud

 A bank adopting SaaS cloud provider, Salesforce.com to process

their risk data;

 Started with 11 scenarios representing the requirements

 The architecture consists of 7 components with two types of users,

registered-users and administrators

Searching for implied scenarios and race conditions on

every scenario individually

Results

Usage Scenarios

 Early test case and test suite generation

 demonstrated our ability to enrich current existing test suite to

include security related test cases

 Architecture refinement

 Including detected positive scenarios

 Correcting design errors

 Security risk assessment

Further…

 Automation
 The process can be easily automated

 Requires translating the inputs between the tools forwards and backwards

 Omitting repetitions

 Generality and Applicability
 Working at the architecture offers an adequate level of generality

 Applicable for threaded systems, such as concurrent and real time systems

 Tried on Identity Management Systems, web script design, Smart camera
distributed system, etc…

 Phases of Application
 Approach can begin at analyses and design phase

 Supports early test case generation for test-driven applications

 Scalability
 Lack of scalability in the LTSA-MSC tool requires repetition

 Any tool that is capable of composing scenarios and searching for hidden implied
scenarios can be adapted.

Summarising!

 Proposed a systematic architecture evaluation methodology to search for

potential vulnerabilities in the specification

 Reduce the search time and the chances of overlooking vulnerabilities

 Semantics and syntactic implication of specifications

 Reduces subjectivity

 Takes into account incompleteness of specifications

 Do not make assumptions on how the implementation might prevent an

issue from occurring

 Design-specific to search for design vulnerabilities.

 Evaluating the security posture with presence of negative behaviour

 Might be expensive to redesign a system

 Forms building blocks for searching for multi-step attacks

€10.00 per question please! 

S.Al-Azzani@cs.bham.ac.uk

