
w w w . n a p a . f i

Napa GUI Renewal

Legacy Transformation of 2M sloc
Napabasic Motif GUI to

Ruby WPF GUI

1 © Napa Group 2011

w w w . n a p a . f i

We all love legacy!

2 © Napa Group 2011

w w w . n a p a . f i

Napa GUI Renewal

1. Motivation for renewal

2. Scope or work

3. Business environment

4. Alternatives for implementation

5. Technical challenges and Solutions

6. Project challenges and solutions

3 © Napa Group 2011

w w w . n a p a . f i

1. Motivation for GUI renewal

• Motif = Old

• Emerged in the 1980s

• No significant development since 1994

• Presumed “dead” since around 2000

• Low in features compared to modern toolkits

• Ugly look-n-feel

• No native support on Windows

• Native API in C/C++ (Not our choice)

• Limited 3rd party components

• Difficult to find developers

4 © Napa Group 2011

w w w . n a p a . f i

2. Scope of Motif + NapaBasic GUI

• Developed between 1996...today

• 2...30 developers, ~150 man-years so far

• GUI sourcecode

• 2200 widget-definitions

• Widget layouts with custom tree files

• NapaBasic event handlers and logic

• 40 MB source code (~2.0 msloc)

5 © Napa Group 2011

w w w . n a p a . f i

3. Business Environment

• Continous pressure to keep adding
features to the product

• Maintenance development for existing
customers

• Custom projects of customised features for
special customers

• No possible of ”freezing” the feature
development during major technology
overhaul

6 © Napa Group 2011

w w w . n a p a . f i

4. Alternatives for implementation
 • Q1: Recode vs. Reuse codebase ?

• Q2: Target platform?

• Q3: Target language(s)?

7 © Napa Group 2011

w w w . n a p a . f i

Q1: Recode vs. Reuse codebase?
 • Recode

• Recode piecewise

• Motif/Napabasic Wpf/Ruby:

monstrous interoperability challenges

• Recode in one go

• Reuse

• Reuse Napabasic ”as is”

• Reuse old parser and redirect GUI calls

• New parser and redirect GUI calls

• Transform to code that creates new GUI

8 © Napa Group 2011

w w w . n a p a . f i

Full Recode scenario

9 © Napa Group 2011

Features

Time ~ several years

Recode

“Despite what you may think, rewriting

your software will probably take almost

as long the second time as it did the first time.”

What customers see:

No progress for years

Recode

ready

Joel on Software: “Netscape 6.0 finally went to public beta in April 2000.

The last major release was almost three years ago. Three years is an awfully

long time. During this time, Netscape sat by, helplessly, as their market share

plummeted. [...] They did it by making the single worst strategic mistake that

any software company can make: They decided to rewrite the code from scratch."

w w w . n a p a . f i

”Recode on the side” scenario

10 © Napa Group 2011

“Microsoft almost made the same mistake, trying to rewrite Word for Windows

from scratch in a doomed project called Pyramid which was shut down,

thrown away, and swept under the rug. Lucky for Microsoft, they had never

stopped working on the old code base, so they had something to ship,

making it merely a financial disaster, not a strategic one.”

Features

Time ~ several years

Rewrite with slow rate

(resources split)

What customers see:

Low development in

Legacy codebase

(resources split)

Rewrite never

Ready...?

w w w . n a p a . f i

Legacy Transform

11 © Napa Group 2011

Features

Time ~ several years

Transform

ready

correctly

transformed

statements

What customers see:

Development continues

with normal pace in the

legacy codebase
All development in

New codebase

Transformation

rules development +

Codebase refactoring

E
x
e

c
u

te
 t

ra
n

s
fo

rm

w w w . n a p a . f i

Q2: Target platform
 • Java / Swing / Java3D

• + Existing investement in Java at Napa

• + Multiple vendors for Java

• + Good multiplatform support

• DotNet / WPF / Hoops 3D

• + Technical features of the platform

• + Accelerated 3D graphics support

• + Integration of Napa with other SW

12 © Napa Group 2011

w w w . n a p a . f i

Q3: Target Language for transform

• C#

• + Most standard, Most supported on Dotnet

• + High performance

• + Best integration with WPF

• (Iron)Ruby

• + Power and flexibility of dynamic language

• + Better match for weakly typed NapaBasic

• + Allows tweaks and tricks to help in the more
difficult challenges of transformation

13 © Napa Group 2011

w w w . n a p a . f i

5. Technical challenges and solutions

a) Complex multi-part grammar

b) Mismatch of widget classes

c) Mismatch of widget attributes / events

d) Lacking language features in target

e) Lacking type information

f) Mismatch of types

g) Layering violation in the platform

h) Graphic areas

14 © Napa Group 2011

w w w . n a p a . f i

Complex multi-part grammar

• NapaBasic has evolved during 25 years

• Originally commands given interactively

• Later lists of commands to ”macros”

• Later variable references @x

• Later @goto and @label ... @if... Then

• Later syntax for GUI callbacks ${id}

• The grammar layers are implemented as a
series of preprocessors – no single parser

• ANTLR Grammar + Parser developed

15 © Napa Group 2011

w w w . n a p a . f i

Mismatch of widget classes
 • PUSHBUTTON -> Button (ok)

• FORM -> ?

• MENUPANE + MENUBUTTON -> Menuitem

• COMBOBOX multipart

16 © Napa Group 2011

w w w . n a p a . f i

Mismatch of widget attributes / events
 • @Mtf.SetResource(acheckbox,'selected','True')

• acheckbox.is_checked = true

• @Mtf.SetResource(btn,'background',c(i))

• btn.background = Wpf::SolidColorBrush.new(c[i-1].to_color)

• btn.background = c[i-1].to_color.to_brush

• @ui.getarr(${id},'children[n]',c)

• c = self.children_names

17 © Napa Group 2011

w w w . n a p a . f i

Lacking language features in target
 • GOTO

• SUBROUTINE

• OUT/VAR parameters

18 © Napa Group 2011

w w w . n a p a . f i

Lacking type information
 • @if (a < b) @goto x

• a and b can be strings in Napabasic

• @if x = 0 then

• X can be widget (nil in Ruby)

• Solutions:

1. type inference (for eg. Widgets)

2. Refactoring sources

19 © Napa Group 2011

w w w . n a p a . f i

Mismatch of types

• @x=’True’

• Lack of booleans in Napabasic

• @wid=ui.wid(’Par*MyWindow’)

• @s=os.str(’w#’,wid)

• Widget id used as integer, but object in Wpf

20 © Napa Group 2011

w w w . n a p a . f i

Layering violation in the platform
 • GUI events calling fortran core...

• ...and fortran core calling GUI

• Impossible to support in WPF

21 © Napa Group 2011

w w w . n a p a . f i

Graphic areas

• Important areas of NAPA GUI (3D CAD)

• Simple from widget structure point of view

• Complex custom Fortran/C implementation

• Solution: Recoding replacement (stable)

22 © Napa Group 2011

w w w . n a p a . f i

Most powerful enabling factors

1. IronRuby flexibility / monkey-patching

2. Refactoring legacy sources to transform

• Complete removal of many features

3. Extract method + map

23 © Napa Group 2011

w w w . n a p a . f i

6. Project challenges and solutions

• Getting people testing and using new GUI

• Re-testing all parts of GUI

• Resources partly tied to maintenance of
the legacy SW

• Effort/Schedule Estimation difficult

• Schedule slip... Problem?

24 © Napa Group 2011

w w w . n a p a . f i

Estimation

• Development of transformation rules:
2008/03 – 2011/06 (1-4 people at a time)

• Debugging WPF GUI and fixing transform:
2011/06 - current

• Estimation difficult in the debug phase:

• Like walking in forest: seeing the nearby trees

• More focus on refactoring in fixing badly
transforming code

• Method A: Extrapolate error frequency

• Method B: Extrapolate from fixed codebase

 25 © Napa Group 2011

w w w . n a p a . f i

Risks

• Transformation technologically feasible?

• 10% risk

• Final post-transform fixes take too long?

• Minimize by taking transform far enough

• Estimation fails

• GUI usability development ignored

• Lack of faith -> People leave company

26 © Napa Group 2011

w w w . n a p a . f i

Plan ahead

• More recruitment to GUI renewal,
especially in Romania

• 3 current developers from India

• Help from other teams, 1 per team
allocated...? (How works with Scrum?)

• Subcontracting in Finland...?

• Lessening feature-development pressure

27 © Napa Group 2011

w w w . n a p a . f i

Conclusions

• Weird source language makes conversion
tricky – but also more valuable

• Significant problems encountered but
powerful solutions found.

• During the project, feature development
has been proceeding without freeze

28 © Napa Group 2011

